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ABSTRACT
Quality prediction for small-batch production processes is a complex problem due to limitations in
available training samples. In this study, amultisource domain adaptation joint-Y partial least square
(PLS) method is proposed to learn the similarities between domains and use them to construct a
quality predictionmodel. Without constraints on the number of source and target domains, the pro-
posedmethod can transfer more historical information for the in-operation process than traditional
methods. Numerical experiments and a real-world case studyof quality prediction in computerwafer
production are performed to verify the effectiveness of the proposedmethod. The results show that
the prediction accuracy of the proposed method is high in cases with few training samples in the
target domain compared to the accuracies of the joint-Y PLS model and the traditional PLS model.

ARTICLE HISTORY
Received 2 April 2021
Accepted 22 September 2021

KEYWORDS
Quality prediction;
small-batch process; domain
adaptation; partial least
square; multitask learning

1. Introduction

Small-batch production is gradually becoming a main-
stream manufacturing mode for various products such
as metals, semiconductors, pharmaceuticals and chemi-
cals (De Vin, De Vries, and Streppel 2000; Jia, Zhang, and
You 2020; Yin et al. 2012). Two primary characteristics
of small-batch production are multiple varieties and pro-
cess similarity (Zhang et al. 2011). With the increasing
demand for high-quality process control, it is essential
to make effective quality predictions during production
to reduce the costs of defective products and to make
quick adjustments. However, in small-batch production
processes, the limited number of samples in one batch is
typically not sufficient to make precise predictions, while
simply combining groups of batches using a sharedmodel
would miss the various patterns of different batches. To
describe the challenges of quality prediction in small-
batch processes, computer wafer production is consid-
ered a motivating example. Single crystals of silicon are
the primary rawmaterial in wafer production, and only a
few wafers can bemade from one single crystal of silicon,
whose physical and chemical properties are typically dif-
ferent from each other. Therefore, to make wafers from
different single crystals of silicon have similar quality,
wafers from one single crystal of silicon are considered a
small batch in wafer production processes. Additionally,
the functional relationship between process parameters

CONTACT Kaibo Wang kbwang@tsinghua.edu.cn Department of Industrial Engineering, Tsinghua University, Beijing 100084, People’s Republic of
China

and the final quality of wafers from different batches
are similar but different, which leads to the problem of
modelling multiple small-batch processes with similar
properties.

Among data-driven models, many multivariate meth-
ods, such as ridge regression (Hoerl and Kennard
1970), partial least square (PLS) (Geladi and Kowalski
1986), principal component regression (PCR) (Linares
and Mederos 1981)and support vector machine (SVM)
(Boser, Guyon, and Vapnik 1996) approaches, have been
shown to be effective in handling quality prediction prob-
lems with high-dimensional of feature spaces. However,
these methods all require the feature spaces (the number
of input variables and themeaning of each variable) of the
same size, which is a requirement that is sometimes vio-
lated in real-world small-batch quality prediction prob-
lems due to the differences in process procedures and
the absence of certain variables. Joint-Y PLS (JYPLS)
(Garcia-Munoz, MacGregor, and Kourti 2005) and joint-
Y kernel PLS (JYKPLS) (Chu et al. 2018) are two variants
of PLS that assume a common latent feature space of dif-
ferent batches and aim to model similar processes with
different input feature spaces.

These methods require relatively large numbers of
training samples to construct an effective model. How-
ever, in small-batch processes, it is difficult to obtain suf-
ficient training data for an in-operation batch. In recent
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Figure 1. Information transformation from a source (XS, YS) with
many samples to a target (XT , YT ) with a few samples (f · is the
functional relationship for the corresponding domain).

years, domain adaptation (DA), a method of transfer
learning, has been extensively used to effectively model
similar processes with limited training samples (Duan,
Xu, and Chang 2012; Long, Wang, Ding, Sun, et al. 2013;
Pan, Tsang, Kwok, & Yang, 2011). To describe DA more
completely, the definitions of related concepts are briefly
introduced below. A domain D consists of the feature
space X and the marginal distribution p(X), which is
shown by input samplesX = {x1, x2, · · · , xn} ∈ X . A tar-
get consists of the label spaceY and the relationship func-
tion f (·). A general problem of DA typically consists of
two types of domains: source domain DS = {(xi, yi)}nSi=1
and target domainDT = {(xi, yi)}nTi=1, where the informa-
tion of the source domain is greater than that of the target
domain (nS � nT). The goal of transfer learning is to
learn the function of the target task fT(·) using the infor-
mation of DS and DT , with the assumption that fS(·) �=
fT(·) (Weiss, Khoshgoftaar, andWang 2016). Specifically,
DA learns how tomap the feature spaces of the source and
target domains into a common feature space so thatmod-
elling the function between labels and the common latent
features has sufficient training samples. The idea of the
complete learning process is briefly shown in Figure 1. In
the wafer production example, historical batches are con-
sidered the source domains, while the in-process batch
is the target domain. To construct an effective model to
predict the quality of the in-process batch, using limited
training samples is insufficient, and the information from
historical batches is then required.

DA is a method of feature transfer and is one of the
three main categories of transfer learning (Cheng, Tsung,
and Wang 2017), which has been widely used in pro-
duction areas such as quality control and fault diagnosis
(K. Wang and Tsung 2020; Z. Wang et al. 2020). The
goal of DA is to solve a learning method in the target
domain using the information of training data from the

source domain, which is suitable for small-batch pro-
cesses (Long et al. 2014; Long, Wang, Ding, Pan, et al.
2013). Note that the training data (source domain) and
the application data (target domain) may have differ-
ent distributions, which is different from the common
assumption of traditional statistical and machine learn-
ing models (Muandet, Balduzzi, and Schölkopf 2013).
There are many existing methods of DA, such as transfer
component analysis (TCA) (Pan, 2011), joint distribution
adaptation (JDA) (Long, Wang, Ding, Sun, et al. 2013)
and geodesic flow kernel (GFK) (Gopalan, Li, and Chel-
lappa 2011). These methods, however, assume the same
feature space XS = XT and the same label space YS =
YT , which is categorised as homogeneous DA.More gen-
eral cases when XS �= XT (YS = YT holds) are called
heterogeneous DA and use techniques such as mani-
fold alignment (C. Wang and Mahadevan 2011) and
discriminative distribution alignment (Yao et al. 2020).
Although DA is widely used in neural networks, there
have been few attempts to combine DA with statistical
models, where DA focuses on learning themapping from
the original feature spaces to the common latent fea-
ture space and statistical models focus on learning the
functional relation between the common latent feature
space and the label space. Domain-invariant PLS (Nikzad
et al. 2018) aligns the source and target distributions in
the latent feature space using a domain regularisation
method. Domain adaptation joint-Y PLS (DA-JYPLS)
(Jia, Zhang, and You 2020) adds a regularised term in
the objective function to describe the trade-off between
maximising the covariances of input and output variables
andminimising the differences of the distributions of the
source and target domains.

Among the methods listed above, DA-JYPLS and
domain-invariant PLS are combinations of heteroge-
neous DA and statistical methods. However, these two
variants assume that there is only one source domain and
one target domain. In real-world problems such as wafer
production, which has multiple domains, these meth-
ods are not applicable because the number of samples in
each source domain is also limited; thus, the expected
model needs to transform information from multiple
domains. There are othermethods that considermultiple
domains in DA including multisource TCA (Grubinger
et al. 2017) and multisource Generative Adversarial Net-
works (GAN) (Zhao et al. 2017). The former method
focuses on learning mapping matrices, while the latter
method is based on the neural network and needs many
samples from each domain, which are also not suitable
for the small-batch process.

In general, there have been a few attempts to combine
statistical models and domain adaptation with multiple
domains in the application of small-batch processes. In
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this study, a novel domain adaptation regression method
is proposed to extend the DA-JYPLS method to cases
with multiple domains. Similar to JYPLS and some het-
erogeneous DA methods, the present method does not
require the observations from all source domains to
have anything in common except for having the same
response variables, i.e. YS = YT . However, more shared
information can be learned and the present method is
more effective if the sources are more similar. Addition-
ally, there is no restriction on the number of either the
source domains or the target domains, which increases
the potential applications of the proposed method. In
real-world cases, the proposed method can be used to
predict the quality of a new batch in a small-batch process
using information from multiple historical batches.

The remainder of this paper is organised as follows. In
Section 2, the proposed model and the relevant param-
eter estimation steps are presented in detail. Examples
including numerical experiments and a real-world appli-
cation problem are presented in Section 3 and Section 4,
respectively, to verify the efficiency of the proposed
method Finally, conclusions are drawn in Section 5.

2. Model

The proposed multisource DA-JYPLS model is shown in
detail in Section 2.1. The parameter estimation proce-
dures and the techniques for selecting hyperparameters
are presented in Section 2.2 and Section 2.3, respectively.

2.1. Multisource domain adaptation joint-Y PLS

In the domain adaptation problem with multiple dom-
ains, we assume that there are K(≥ 2) relative domains
and that there is no restriction on the number of
source domains and target domains.Dk = {(xi,k, yi,k)}nki=1
denotes the pairs of input and output data from the
kth domain with the corresponding input and output
matrices, which are denoted asX=

k [x
T
1,k, x

T
2,k, · · · , xTnk,k] ∈

R
nk×dXk and Y=

k [y
T
1,k, y

T
2,k, · · · , yTnk,k] ∈ R

nk×dY , respec-
tively. JYPLS assumes thatYk matrices lie in the common
latent space that is defined by the joint loadingmatrixQJ ,
which is the plane described by all Yks. The only restric-
tion for JYPLS is that allYksmust have the same variables
defining their columns. The model does not have any
restrictions on Xks, the number of the columns in Xks,
or the nature of the variables defining them. The loading
matrices, Wks, are defined as the direction of variation
in Xks’ space that are most correlated with QJ . Tks are
defined as the scoring matrices of Xks on the loading
matrices, Wks. The model also assumes Xks to have a
common latent space. The loadingmatrices,Wks, scoring
matrices, Tks, together with the weight matrices defined

by Pks, should have different forms because the numbers
of dimensions in Xks are different (Jia, Zhang, and You
2020).

Similar to JYPLS, the model part of the proposed
method is given as follows:

Y J =

⎡
⎢⎣
Y1
...

YK

⎤
⎥⎦ =

⎡
⎢⎣
T1
...

TK

⎤
⎥⎦QT

J + EYJ (1)

Xk = TkPT
k + EXk k = 1, . . .,K. (2)

Tk = XkWk k = 1, . . . ,K. (3)

where EXk are residual matrices of input variables of the
kth domain and EYJ is the residual matrix of the joint
output variables. In contrast to the JYPLS model, the
objective function for the loading vector wJ is given in
Equation (4) in its general form:

max
wJ

cov{tJ ,Y J} − μ1 · dist(t1, · · · , tK) − μ2 · LossLocality
(4)

s.t. tk = Xkwk k = 1, . . . ,K

||wJ || = 1

tk ∈ R
nk×1, wk ∈ R

dXk×1

where tTJ = [tT1 , . . . , t
T
K] is the joint vector of the first

scoring vectors of the domains,wT
J = [wT

1 , . . . ,w
T
K] is the

joint vector of the first weight vectors of the domains, and
μ1,μ2 are parameters for the two penalty terms.

In the objective function (4), the first term is similar to
the JYPLS model, maximising the covariances between
the scoring vector and the output data and the second
term is the extension form for minimising the distribu-
tion distances of scoring vectors of K domains. Recall
that under the assumption of domain adaptation, the
marginal distributions of the projection of the input data
of different domains in the common latent feature space
might be different (i.e. p(tS) �= p(tT)), and the shared
loadingmatrixQJ cannot effectively suit them. Therefore,
adding the term of minimising the distribution distance
of tks would increase the explanatory ability of themodel,
which is a commonly used technique in DA methods.
The specific form of the second form is given as follows:

dist(t1, . . . , tK) = Var{Var(t1), . . . ,Var(tK)}

= 1
K − 1

K∑
i=1

(
Var(ti) − 1

K

K∑
i=1

Var(ti)

)2

= 1
K − 1

wT
J

( K∑
i=1

AiwJwT
J Ai

)
wJ (5)
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where Ai is a K-block diagonal matrix with the
jth(j = 1, . . . ,K) block expressed as

A(j)
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

XT
j Xj

nj − 1
·
(

− 1
K

)
j �= i

XT
j Xj

nj − 1
·
(
K − 1
K

)
j = i

(6)

Note that this form of evaluating distribution difference
is defined as the squared value of the difference of the
variances, which is similar to the CORAL distance (Sun
and Saenko 2016). Conversely, distances between multi-
ple domains are typically in the formof dist(t1, . . . , tK) =∑K

i=1
∑

i�=j dist(ti, tj). There are other terms for evalu-
ating the distribution difference in domain adaptation,
such as the maximummean discrepancy (MMD) (Smola
et al. 2007a, 2007b) and Earth mover’s distance (EMD)
(Rubner, Tomasi, and Guibas 2000), which are not suit-
able for use in themodel because themeans of the vectors
are the same after normalisation.

In contrast to DA-JYPLS and domain invariant PLS,
which consider only one source and one target domain,
in the present work with multiple domains with dif-
ferent features, learning the scoring vector by only
minimising their marginal distribution differences may
destroy their geometrical properties within domains.
When source domains have little in common, the dis-
tributions’ distance-minimisation term might ‘overlearn’
the shared information and therefore make the extracted
features fromdifferent domains ‘over similar’. The result-
ing projection matrix usually destroys the geometric
properties within domains, where the geometric proper-
ties in the present work are called ‘locality’. Therefore, to
make the model more effective even in cases in which
there are outlier domains that have little similarity with
other domains, a penalty form is added in the objective
function as the locality loss. The specific definition of the
form comes from the idea in TCA (Pan, 2011) and is
given as:

LossLocality =
K∑

k=1

nk∑
i,j=1

ti − tj2Dk(i,j) = wT
J X

TLXwJ (7)

where nk is the number of samples in the kth domain, and
Dk(i,j) is the element of the matrix Dk in the ith row and
jth column, which is defined as:

Dk(i,j) =

⎧⎪⎨
⎪⎩
exp

(
−xk,i − xk,j2

σ 2
k

)
if xk,i ∈ Nlk(xk,j)

0 otherwise.
(8)

where xk,j is the jth input sample in the kth domain and
Nlk(xk,j) is the set of lk-nearest neighbours of xk,j within

Figure 2. Illustrated example of the locality preservation term.

the kth domain. Note that the loss term is defined as a
weighted summation of the quadratic form of differences
between observations in the latent feature space within
domains. The respective weight is negatively correlated
with the differences between observations in the origi-
nal feature space within domains. Minimisation of the
summation will make the elements with lower weights
greater than those with higher weights. Therefore, dis-
tances between observations in the latent feature space
are comparatively larger if they have larger distances in
the original feature spacewith lowerweights, which keeps
the geometric properties (locality) within domains. To
further explain the effect of the locality loss form, a sim-
ple example is considered where the same number of
points (observations) are stochastically chosen in two
ellipses that represent two source domains. The lengths
of the minor axis are equal, while the major axis is not,
which is shown in Figure 2. If we aim to choose the 1-
D latent feature space, only minimising the distribution
difference in the latent space would obtain x2. This would
lose all the information about x1, which has more unique
information within domains. Adding the consideration
of locality preservation would make the resulting latent
space a combination of x1 and x2, which keeps both the
shared and unique information. The locality loss can be
further derived as Equation (9):

LossLocality =
K∑

k=1

nk∑
i,j=1

||ti − tj||2Dk(i,j) = wT
J X

TLXwJ

(9)
where X = diag{X1, . . . ,XK} is the diagonal matrix of
the input data and L = diag{L1, . . . , LK}, Lk = Sk − Dk,
where Lk is an nk × nk diagonal matrix with the ith ele-
ment is the sum of elements in the ith row of Dk (i.e.
Sk(i,i) = ∑nk

j=1Dk(i,j)).
Combining these three terms in the objective func-

tion, the final optimisation problem for finding the
first components for scoring and weight vectors can be
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written as:

max
wJ

{
cov{tJ ,Y J} − μ1Var{Var(ti)}

− μ2

K∑
k=1

nk∑
i,j=1

||ti − tj||2Dk(i,j)

⎫⎬
⎭ (10)

s.t. tk = Xkwk k = 1, . . . ,K

||wJ || = 1

2.2. Parameter estimation

Having defined the model and the objective function,
the parameters in the proposed model should be esti-
mated from the available data in the domains. Substitut-
ing Equations (5) and (9) into objective function (10), the
final objective function can be written as:

max
wJ

wT
J MwJ − λ1wT

J

( K∑
i=1

AiwJwT
J Ai

)
wJ

− λ2wT
J X

TLXwJ (11)

s.t. ||wJ || = 1

where M ∈ R
(n1+···+nK)×(n1+···+nK); the block of the ith

row and the jth column are Mi,j ∈ R
ni×nj = XT

i Y iYT
j Xj

(i, j = 1, . . . ,K); and λ1 and λ2 are the adjusted penalty
hyperparameters. According to the Lagrange slack
theorem, the optimisation problem (11) can be reformu-
lated as follows by adding a Lagrange multiplier λ3:

max
wJ

L(wJ) = wT
J MwJ − λ1wT

J

( K∑
i=1

AiwJwT
J Ai

)
wJ

− λ2wT
J X

TLXwJ − λ3(wT
J wJ − 1) (12)

Taking the derivative of Equation (12) with respect to
wJ and setting it equal to zero, the following equation is
obtained:

MwJ = 2λ1

( K∑
i=1

AiwJwT
J Ai

)
wJ + λ2XTLXwJ + λ3wJ

(13)
Note that Equation (13) contains the high-order term
of wJ , and we cannot obtain the analytical form of w∗

J ,
which is the reason why we used Newton’s method to
obtain an approximate solution. The result w∗

J is actu-
ally a local optimum for the optimisation problem (12).
However, if the initial value of Newton’s method is ran-
domised, the resulting local optimum solution might be

worse thanwJYPLS
J , which violates the expectation. There-

fore, using wJYPLS
J as the initial value for iteration can

make the resultw∗
J a comparatively closer local optimum

solution to wJYPLS
J , which is more likely to obtain a better

solution in the optimisation Equation (12) than wJYPLS
J ,

although it might not be the global optimum solution.
Note that wJYPLS

J is the solution to optimisation problem
(14) as follows:

max
wJ

cov(tJ ,Y J) = wT
J

⎡
⎢⎣
XT
1 · · · 0
...
. . .

...
0 · · ·XT

K

⎤
⎥⎦
⎡
⎢⎣
Y1
...

YK

⎤
⎥⎦

×

⎡
⎢⎣
Y1
...

YK

⎤
⎥⎦
T ⎡
⎢⎣
X1· · · 0
...
. . .

...
0 · · ·XK

⎤
⎥⎦wJ (14)

s.t. ||wJ || = 1

InNewton’s method, the original function and its deriva-
tive are given as:

G(wJ) = MwJ − 2λ1

( K∑
i=1

AiwJwT
J Ai

)
wJ

− λ2XTLXwJ − λ3wJ (15)

G′(wJ) = M − 2λ1
K∑
i=1

(wT
J AiwJ + 2AiwJwT

J )Ai

− λ2XTLX − λ3I. (16)

1.We initialisew(0)
J aswJYPLS

J , and iteratively updatewJ as:

w(i+1)
J = w(i)

J − [G′(w(i)
J )]−1G(w(i)

J ) (17)

until convergence (i.e. |w(i+1)
J − w(i)

J | < ε). The detailed
algorithm for the proposed multisource DA-JYPLS
model is described as follows:

1. Mean centre andunit-scale inputmatrixX1, · · · ,XK ,
Y1, · · · ,YK

For i = 1 : A, repeat step 2–7. Initialise Y J1 = Y J
and Xk1 = Xk(k = 1 · · ·K)

2. Obtain the scoring vector wJi by solving the optimi-
sation problem (11)

3. Normalise wJi by wJi = wJi
||wJi|| , and obtain wkii =

1 · · ·K
4. Regress to obtain the scoring vector tki by tki =

XT
kwki(wT

kiwki)
−1

5. Regress to obtain the loading vector qJi by qki =
YT
J tJi(t

T
Ji tJi)

−1

6. Calculate pki by pki = XT
k tki(t

T
kitki)

−1



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 6273

7. Deflate the matrices Xk,Yk by equations Xk,i+1 =
Xki − tkipTki, Yk,i+1 = Yki − tkiqTJi

Thefinal projectionmatrices areW∗
k = Wk(PT

kWk)
−1

and the final prediction for test data in the kth domain is
ŷk = xk,newW∗

kQ
T
J , where xk,new is the new observation of

input data in the kth domain.

2.3. Determining the hyperparameters

In the proposed model, there are many hyperparameters
that must be determined before the final estimation for
the weight and scoringmatrices. σ 2

k in Equation (8) is the
bandwidth of the exponentials and should be determined
by the scales of the input data in the kth domain to make
the elements of Dk properly disperse. lk is the number of
chosen nearest neighbours in the kth domain and should
be selected properly according to the number of samples
in the domain. In this work, lk = 0.5× number of train-
ing samples in the respective domain. A sensitivity analy-
sis of lk and detailed interpretation are given in Section 3.
Similar to DA-JYPLS, λ1 and λ2 are selected from a finite
candidate set and are tuned by cross-validation for the
training data of the domains. In the following numeri-
cal simulations and real-world examples, candidate sets
�λ1 = �λ2 = {10−2, 10−1, 100, 101, 102, 103}. Note that
the combination of these two parameters in the optimisa-
tion problem when extracting each component could be
different. Additionally, |�λ1 | = |�λ2 | = 6 is not a large
number and is chosen in this work to simplify com-
putations because the number of candidate combina-
tions of λ1 and λ2 is |�|2A, where A is the number of
latent variables. Therefore, the computation would be
costly if denser candidate sets for λ1 and λ2 are chosen.
The Lagrange multiplier λ3, is set equal to the JYPLS
model (i.e. the largest eigenvalue of the matrix M in
Equation (11)).

3. Numerical simulations

In this section, numerical experiments are conducted
to verify the efficiency of the proposed method. The
comparison models included in the experiments are the
JYPLSmodel and the separate PLSmodel, which operates
multiple traditional PLS methods on the samples of each
domain.Note that the parameters of these twomodels are
estimated using the NIPALS algorithm, which has been
shown to be stable and accurate. Apart from the variants
of PLS, principal component regression (PCR) and sup-
port vectormachines (SVMs) are also serve as comparing
methods. These two methods are also utilised separately
on each domain.

The measurement index that is used to determine the
penalty parameters used in this study is the leave-one-
out cross-validation (CV) with the mean absolute error
(MAE). MAE is also used to compare the efficiency of
the different models. These two measurements would
be specifically defined in different situations. As men-
tioned above, there are no constraints on the number of
source domains or the target domains; however, in sce-
narios with different combinations of these two types of
domains, their goals are different, and thus, the evalu-
ation index should be adjusted correspondingly. In this
study, two specific scenarios are designed to verify the
stability and efficiency of the prediction performance
of the proposed model: multiple source domains with
one target domain and multiple target domains with no
source domain. In the present method, theoretically, data
from different domains (Xk,Yk) are treated equally, and
the only difference between the source domains and the
target domains is the number of observations (sufficient
information or not). The two scenarios are designed to
fit real-world application situations. In Scenario 1, where
there are multiple source domains and a single target
domain, a new batch (target domain) of products is in
process, and there are many finished batches (source
domain) from which we can learn information. Addi-
tionally, since the historical batches are finished, there
is no need to transfer knowledge from other domains
to help model the processes of source domains. In Sce-
nario 2, where there are multiple target domains, several
new batches are in process, and there are no historical
batches (source domains) to learn from. Therefore, in the
application’s view, the in-process batches (which can be
improved) are classified into target domains and histor-
ical batches (which cannot be improved) are classified
into source domains. Usually, the information from the
source domains is more sufficient but shared informa-
tion can be learned and transferred from both source
and target domains. The corresponding MAEs for CV
and comparisons between the two scenarios are defined
below.

Scenario 1: multiple source domains and one target
domain

MAECV = 1

n(train)
T

n(train)
T∑
i=1

dY∑
j=1

|yT,i,j − ŷT,−i,j| (18)

MAE = 1

n(test)
T

n(test)
T∑
i=1

dY∑
j=1

|yT, i,j − ŷT,i,j| (19)

where n(train)
T and n(test)

T are the numbers of training sam-
ples and testing samples in the target domain, respec-
tively; dY is the dimension of the output data; yT,i,j is the
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Figure 3. Design of the two scenarios. (observed data are symbolised as solid boxes and unobserved data are symbolised as dotted
boxes; f · is the functional relationship for the corresponding domain).

real value of the jth element of the ith sample in the target
domain; ŷT,−i,j is the predicted value of the jth element of
the ith sample in the model without using the ith sample
in the training samples of the target domain; and ŷT,i,j is
the predicted value of the jth element of the ith sample
in the testing samples of the target domain. Note that in
Scenario 1, the prediction ability of the source domains is
not included because in this scenario, the target domain is
typically associated with the in-operation processes, and
source domains are associated with historical processes
and thus not important compared to the target domain.

Scenario 2: multiple target domains and no source
domain

MAECV = 1
K

K∑
k=1

1

n(train)
k

n(train)
k∑
i=1

dY∑
j=1

|yk,i,j − ŷk,−i,j|

(20)

MAE = 1
K

K∑
k

1

n(test)
k

n(test)
k∑
i=1

dY∑
j=1

|yk, i,j − ŷk,i,j| (21)

where K is the number of the target domains; n(train)
k ,

n(test)
k are the numbers of training samples and the test-

ing samples of the kth domain, respectively; and yk,i,j,
ŷk,−i,j and ŷk,i,j have similar meanings to Scenario 1.
Note that in Scenario 2, because all domains are target
domains, the prediction ability in every domain is con-
sidered in this multitask problem. The design of these
two scenarios is shown in Figure 3, where Scenario 1
focuses on the transfer of historical information from the
source domains, and Scenario 2 focuses on the shared
information between multiple target domains.

The settings of the input data and the functional rela-
tionship are given below. In this study, the generation

steps of the two designed scenarios are the same, and
the differences are the number of training samples of
each domain. If the number of samples from a partic-
ular domain is sufficient, then this domain is grouped
as the source domain; otherwise, it is grouped as the
target domain. In the following experiments, the num-
ber of domains is K = 3, and the total number of sam-
ples in each domain is Nk = N = 100. For the domains
serving as the source domain, n(train)

k = Nk, n
(test)
k = 0,

and for the target domains, n(train)
k = ptrain · Nk, n

(test)
k =

(1 − ptrain) · Nk, where ptrain is the proportion of the
training samples for the target domains. The data matri-
ces are generated by following the simulation study
from the previous DA-JYPLS work (Jia, Zhang, and You
2020). The number of dimensions of the latent space
for the input matrices is denoted as dl. The rows of
scoring matrices Tk ∈ R

Nk×dls are generated with dif-
ferent Gaussian distributions, and the input data matri-
ces Xk ∈ R

Nk×dXk s are generated by using Equation (2).
The output data matrices Yk ∈ R

Nk×dY s are obtained by
employing Equation (1). In this study, elements of Pk ∈
R
dXk×dls and QJ ∈ R

dY×dl are generated from standard
Gaussian distributions, and elements of EXk ∈ R

Nk×dXk s
and EYJ ∈ R

Nk×dY are generated from Gaussian distri-
butions with a 0 mean and 0.1 variance. The number
of dimensions for matrices and the distribution of Tks
in each domain are listed in Table 1. The similarity of
Tks’ distributions between domains stands for their sim-
ilarity of the functional relationship of input and output
variables according to this simulation setting. The num-
ber of latent variables in these PLS variants and PCR
are set to dl.

The results of Scenario 1 with different training pro-
portions ptrain are shown in Figure 4 and Table 2 with 100
replications.
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Figure 4. Mean MAEs with different training proportions produced by the five methods in Scenario 1.

Table 1. Some simulation settings of the domains.

Matrices Domain 1 (S) Domain 2 (S) Domain 3 (T)

Distribution of Tk N(0.9 × 1dl , Idl ) N(1.1 × 1dl , Idl ) N(1.0 × 1dl , Idl )
dXk 6 8 7
dY 2
dl 4

It is shown that the prediction accuracy of the pro-
posedmethod is greater than that of the other four meth-
ods when the training proportion is relatively small (i.e.
ptrain ≤ 0.3). Note that the proposed method is better
than the JYPLS method in all ptrain values, which agrees
with the theoretical advantages of the proposed method.
Due to the penalty terms in Equation (5), the pro-
posed method effectively learns the similarity between

the domains. However, because the number of training
samples is sufficient, the proposed model is marginally
less accurate than the separate PLS model because a dif-
ference between the coefficients between domains exists,
as shown in Equation (24). The potential reasons for
this phenomenon are that when the number of train-
ing samples of the target domain is small, the effects
of the learned similarity of the proposed model are
greater than the effects of the differences of the coeffi-
cients between domains; the relationship also reverses
when the number of training samples is sufficient to con-
struct an accurate PLS model using only information
from the target domain. Note that the designed func-
tional relationship is linear, which is not complex, and the
corresponding intersection point of the training propor-
tion is between 0.30 and 0.35. In theory, the intersection

Table 2. MeanMAEs and standarddeviations inparentheseswithdifferent training
proportions produced by the five methods in Scenario 1.

ptrain JYPLS DA-JYPLS Separate PLS Separate PCR Separate SVM

0.05 2.016 (0.807) 1.922 (1.235) 2.216 (0.785) 2.367 (0.969) 2.282 (0.931)
0.1 1.776 (0.362) 1.615 (0.556) 1.802 (0.447) 1.929 (0.485) 1.846 (0.417)
0.15 1.640 (0.258) 1.506 (0.392) 1.549 (0.309) 1.849 (0.447) 1.742 (0.298)
0.2 1.588 (0.252) 1.455 (0.403) 1.478 (0.232) 1.642 (0.304) 1.657 (0.246)
0.25 1.560 (0.222) 1.362 (0.398) 1.392 (0.216) 1.586 (0.291) 1.628 (0.229)
0.3 1.519 (0.168) 1.337 (0.338) 1.367 (0.202) 1.576 (0.258) 1.583 (0.205)
0.4 1.500 (0.167) 1.307 (0.295) 1.262 (0.152) 1.554 (0.257) 1.548 (0.166)
0.5 1.489 (0.179) 1.259 (0.292) 1.245 (0.179) 1.505 (0.243) 1.539 (0.171)
0.6 1.468 (0.182) 1.239 (0.219) 1.230 (0.157) 1.527 (0.253) 1.530 (0.186)
0.7 1.455 (0.156) 1.228 (0.178) 1.198 (0.142) 1.506 (0.252) 1.516 (0.201)
0.8 1.400 (0.159) 1.216 (0.165) 1.187 (0.162) 1.472 (0.282) 1.493 (0.197)
0.9 1.426 (0.245) 1.223 (0.290) 1.190 (0.239) 1.455 (0.424) 1.453 (0.247)
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Figure 5. Mean MAEs with different training proportions produced by the five methods in Scenario 2.

point of the training proportion might be relevant to the
corresponding absolute number of training samples and
the other settings of the functional relationship. The vari-
ants of the PLS methods perform better than PCR and
SVM in all ptrain values, which might result from the fact
that the simulation datamatrices are generated according
to the JYPLS model.

In Scenario 2 with multiple target domains, the set-
tings are the same except all three domains are target
domains (i.e. ptrain is utilised in all domains). The results
are shown in Figure 5 andTable 3. The overall trend of the
MAE curves in Scenario 2 is similar to those in Scenario
1: the proposed method achieves the best performance
when ptrain is relatively small and achieves better per-
formance than the JYPLS method in all ptrain values. In
Scenario 2, the difference between the proposed method
and the JYPLS method is smaller than that in Scenario
1. The intersection point of ptrain between the proposed
method and the separate PLS model is also smaller than
that in Scenario 1 (i.e. between 0.1 and 0.15). This result
shows that the effects of domain adaptation decrease
in cases with multiple target domains because there are
fewer training samples in all domains and therefore less
shared information to be learned. In general, the pro-
posed method is effective in cases in which the available
samples of the target domain are limited, specifically in
cases where there are source domains to be learned from.

Recall that lk is an important hyperparameter in the
proposed method. In this work, sensitivity analysis of lk

is given to provide practical guidance on the selection
of lk. The settings and the data generation steps are the
same as in Scenario 1. The training proportion of the
target domain is set to ptrain = 0.15, which is a compar-
atively suitable situation for DA-JYPLS to be utilised. To
determine the potential influence of lk, it is set to lk =
plkn

(train)
k in each domain. The results are summarised

in Figure 6. The performance of the proposed method
is better when plk is neither too large nor too small; in
this case, p∗

lk
= 0.5. Theoretically, plk affects the chosen

number of nearest neighbours and further influences the
effect of the locality loss form in the optimisation prob-
lem. When plk is too small, the chosen neighbours are
not enough to reflect the local distribution of variables
in the original feature space. On the other hand, when
plk is large, the local distribution becomes ‘global’ in the
domain and keeping this global information within the
domain would contradict the shared information learned
from other domains. In practice, the method would be
sensitive to outliers within domains when plk is chosen to
be too large.

4. Real example study

In this section, the proposed model is applied to the
problem of wafer quality prediction to further demon-
strate its effectiveness. The complete production process
primarily consists of physical and chemical machining
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Table 3. MeanMAEs and standarddeviations inparentheseswithdifferent training
proportions produced by the five methods in Scenario 2.

ptrain JYPLS DA-JYPLS Separate PLS Separate PCR Separate SVM

0.05 2.429 (0.476) 2.237 (0.850) 2.520 (0.719) 2.560 (0.583) 2.493 (0.356)
0.1 1.889 (0.269) 1.788 (0.447) 1.795 (0.263) 1.934 (0.248) 1.939 (0.225)
0.15 1.800 (0.185) 1.666 (0.370) 1.660 (0.257) 1.805 (0.213) 1.764 (0.152)
0.2 1.754 (0.165) 1.642 (0.365) 1.519 (0.209) 1.742 (0.183) 1.676 (0.125)
0.25 1.693 (0.141) 1.584 (0.390) 1.451 (0.159) 1.699 (0.170) 1.664 (0.134)
0.3 1.640 (0.137) 1.553 (0.327) 1.402 (0.148) 1.664 (0.150) 1.634 (0.120)
0.4 1.602 (0.138) 1.536 (0.270) 1.371 (0.106) 1.637 (0.131) 1.613 (0.105)
0.5 1.589 (0.126) 1.509 (0.204) 1.337 (0.116) 1.611 (0.104) 1.590 (0.093)
0.6 1.573 (0.121) 1.470 (0.242) 1.302 (0.109) 1.584 (0.125) 1.559 (0.110)
0.7 1.568 (0.125) 1.454 (0.256) 1.290 (0.097) 1.598 (0.136) 1.569 (0.119)
0.8 1.536 (0.129) 1.427 (0.249) 1.301 (0.128) 1.579 (0.158) 1.572 (0.117)
0.9 1.518 (0.196) 1.406 (0.267) 1.258 (0.169) 1.567 (0.191) 1.566 (0.153)

Figure 6. Mean MAEs with different plk values in the proposed method.

and processing from single crystals of silicon into wafers,
which are the fundamental raw materials in semicon-
ductor manufacturing. The geometric shapes and certain
physical properties ofwafers have a direct effect on down-
stream production and are thus used to estimate wafer
quality. Therefore, it is helpful to accurately predict these
characteristics during the process. Unfortunately, due to
the different physical properties of wafers, the relation-
ships of certain process variables to the characteristics of
each single crystal of silicon are similar but not indif-
ferent. The number of training wafers in process from
single crystals of silicon available to construct an effective
model is expected to be small to reduce costs. Because the
in-process wafers are typically from the same single crys-
tal of silicon, this quality prediction problem is similar to
Scenario 1 in Section 3. Therefore, this problem considers
a single crystal of silicon as a batch (domain), and the

single crystal of silicon in process is the target domain,
while the finished single crystals of silicon serve as the
source domains. A brief introduction of the wafer pro-
duction process is shown in Figure 7. The process consists
of five primary stages, and a quality inspection step is per-
formed after each stage, which generates the observations
of quality variables.

With the available data, there is historical information
from two single crystals of silicon, which are denoted as
Domain S-1 and Domain S-2 and contain 389 and 379
wafers, respectively. There are also 100 observations for
the single crystal of silicon in process, which is denoted
as Domain T. In this study, 6 important quality indices
that are evaluated after the final stage are considered to
be the output variables, most of which are defined by
Semiconductor Equipment and Materials International
as industrial standards; these indices include Centre
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Figure 7. Wafer production process. QI: Quality Inspection.

Figure 8. Mean MAEs with different training proportions produced by the three methods in the real wafer-production process.

Thickness (CTRTHK), Total Thick Variation (TTV),
Total Indicator Reading (TIR), Site Total Indicator Read-
ing (STIR), Bow and Warp. There are missing data and
omitted quality inspections, and therefore, the corre-
sponding number of input variables inspected in the first
four stages of the domains are different, which are listed
in Table 4. The quality variables inspected in the first four
stages contain certain geometric and physical properties,
such as taper and resistivity. Note that the different cir-
cumstances of the available input variables correspond
to the heterogeneous assumption that the domains have
different input feature spaces. In the conclusion of the
numerical experiments, the advantages of the proposed
method should be apparent in situationswith fewer train-
ing samples in the target domain. Therefore, to evaluate
the proposed model, the chosen range of the training
proportion of Domain T is from 0.03–0.15 with a step
length equal to 0.01, and all samples from Domain S-1
and Domain S-2 are used as the training samples of the

Table 4. Available number of input variables from each domain.

Domain
Index

Available
Stages

Number of quality
variables per stage

Total number of
input variables

S-1 1–4 12 48
S-2 1–4 15 60
T 1–3 15 45

source domains. The results are shown in Figure 8 and
Tables 5 and 6, where the hyperparameters are chosen
as follows: the bandwidth parameter in Equation (14) is
σ 2
S1 = σ 2

S2 = σ 2
T = 1.

The results show that the proposed method enhances
the prediction performances compared to the other
methods in the chosen range of the training proportions
of the source data. Comparisons of the first extracted
latent feature’s experimental distributions of the three
domains are shown in Figure 9. The proposed method
succeeds in making observations from different domains
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Table 5. Mean MAEs and standard deviations in parentheses produced by the
five methods in the real wafer production process.

ptrain JYPLS DA-JYPLS Separate PLS Separate PCR Separate SVM

0.03 6.484 (1.32) 5.944 (1.60) 6.785 (1.34) 6.602 (1.20) 6.287 (1.14)
0.04 5.745 (0.98) 5.525 (1.48) 6.012 (0.96) 5.934 (0.93) 5.880 (1.02)
0.05 5.506 (0.87) 5.266 (1.44) 5.692 (0.80) 5.574 (0.77) 5.595 (0.84)
0.06 5.329 (0.76) 5.194 (1.20) 5.459 (0.74) 5.421 (0.69) 5.334 (0.90)
0.07 5.141 (0.70) 5.044 (1.14) 5.349 (0.68) 5.307 (0.74) 5.274 (0.70)
0.08 5.076 (0.72) 5.006 (0.86) 5.240 (0.64) 5.259 (0.69) 5.195 (0.78)
0.09 5.021 (0.68) 4.962 (0.75) 5.172 (0.61) 5.056 (0.64) 5.108 (0.72)
0.1 4.975 (0.70) 4.887 (0.73) 5.000 (0.59) 5.003 (0.65) 5.037 (0.66).
0.11 4.882 (0.69) 4.794 (0.70) 4.939 (0.58) 5.007 (0.69) 4.922 (0.61)
0.12 4.877 (0.65) 4.755 (0.72) 4.834 (0.55) 4.932 (0.65) 4.930 (0.66)
0.13 4.810 (0.69) 4.637 (0.89) 4.777 (0.55) 4.892 (0.66) 4.775 (0.64)
0.14 4.797 (0.66) 4.595 (0.69) 4.719 (0.56) 4.823 (0.68) 4.830 (0.70)

Figure 9. Comparisons of the empirical distributions between the source and target domains in the latent variable space in the wafer
example when ptrain = 0.1. (a) The proposed multisource DA-JYPLS method, (b) JYPLS method.

Table 6. R2preds of the PLS variants for the wafer production
process when ptrain = 0.1.

JYPLS DA-JYPLS Separate PLS

R2pred 0.740 0.751 0.737

that are then distributed similarly in the latent space com-
pared to JYPLS. When physical processes are also sim-
ilar in producing different batches (domains) of wafers,
more shared information can be learned because of
the similarity of distributions, and therefore, the per-
formance of quality prediction can be improved. With
many hyperparameters that need to be tuned, the pro-
posed method is indeed less stable since the devia-
tion of MAEs is relatively larger than that of the other
methods. However, this decrease in stability of the pro-
posed method is acceptable from an overall perspec-
tive of the better performance achieved in the mean
of MAEs.

Based on these analyses of the real-world problem,
when training samples of the in-process batch are lim-
ited in the small-batch processes, the proposed model
achieves better performance by learning the shared infor-
mation between batches than some other methods with-
out using historical information.

5. Conclusions

In this study, a multisource domain adaptation JYPLS
approach is proposed to predict quality during small-
batch production processes. The proposed method is
an extension of the original DA-JYPLS model that uses
multiple numbers of source and target domains, which
is more meaningful in real-world applications. Addi-
tionally, a regularised term of maintaining the local
properties within each domain is added to make the pro-
posed model robust in various situations. The results
of numerical experiments and a real-world case study
about wafer production verify the efficiency of the pro-
posed method in situations with few training samples
in the target domain compared to JYPLS and the tradi-
tional PLS models. In future research, certain extensions
of the model should be developed to construct nonlinear
functional relationships to fit more complex processes.
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